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Anondeterministic finite automaton (NFA) is a 5-tuple, (Q,Σ,∆, q0,F), con-
sisting of

� a finite set of states Q,

� a finite set of input symbols Σ,

� a transition function∆ : Q× Σ → P(Q),

� an initial state q0 ∈ Q,
� a set of states F distinguished as accepting (or final) states F ⊆ Q.

NFA for a∗ + (ab)∗:

REG is the class of languages recognised by a finite automaton.
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An ω-automaton is a quintuple (Q,Σ, δ, qI,Acc), where

� Q is a finite set of states,

� Σ is a finite alphabet,

� δ : Q× Σ → P(Q) is the state transition function,

� qI ∈ Q is the initial state,
� Acc is the acceptance component.

In a deterministic ω-automaton, a transition function δ : Q×Σ → Q is used.

Let A = (Q,Σ, δ, qI,Acc) be an ω-automaton. A run of A on an ω-word
α = a1a2... ∈ Σω is an infinite state sequence ρ = ρ(0)ρ(1)ρ(2)... ∈ Qω ,
such that the following conditions hold:

1. ρ(0) = qI

2. ρ(i) ∈ δ(ρ(i−1), ai) for i � 1 if A is nondeterministic,
ρ(i) = δ(ρ(i−1), ai) for i � 1 if A is deterministic.
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For a run ρ of an ω-automaton, let Inf(ρ) = {q ∈ Q : ∀i∃j > i ρ(j) = q}.

An ω-automaton A = (Q,Σ, δ, qI,Acc) is called

• Büchi automaton if Acc = F ⊆ Q and the acceptance condition is the
following: A word α ∈ Σω is accepted by A iff there exists a run ρ of A on α
satisfying the condition: Inf(ρ) ∩ F ̸= ∅.

• Muller automaton if Acc = F ⊆ P(Q) and the acceptance condition is the
following: A word α ∈ Σω is accepted by A iff there exists a run ρ of A on α
satisfying the condition: Inf(ρ) ∈ F.

• Rabin automaton if Acc = {(E1,F1), ..., (Ek,Fk)}, with Ei,Fi ⊆ Q,
1 � i � k, and the acceptance condition is the following: A word α ∈ Σω is
accepted by A iff there exists a run ρ of A on α satisfying the condition:
∃(E,F) ∈ Acc(Inf(ρ) ∩ E = ∅) ∧ (Inf(ρ) ∩ F ̸= ∅).

• Streett automaton if Acc = {(E1,F1), ..., (Ek,Fk)}, with Ei,Fi ⊆ Q,
1 � i � k, and the acceptance condition is the following: A word α ∈ Σω is
accepted by A iff there exists a run ρ of A on α satisfying the condition:
∀(E,F) ∈ Acc(Inf(ρ) ∩ E ̸= ∅) ∨ (Inf(ρ) ∩ F = ∅)

(
or

∀(E,F) ∈ Acc(Inf(ρ) ∩ F ̸= ∅) → (Inf(ρ) ∩ E ̸= ∅)
)
.
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Büchi automaton for (a + b)∗aω + (a + b)∗(ab)ω with
F = {q1, q3}

Rabin automaton for (a + b)∗aω with
Acc = {({q1}, {q0})}

Muller automaton for (a + b)∗aω + (a + b)∗bω with
F = {{qa}, {qb}}

Streett automaton with Acc = {({qb}, {qa})}.
Each word in the accepted language contains infinitely many
a’s only if it contains infinitely many b’s (or equivalently
they have finitely many a’s or infinitely many b’s).
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